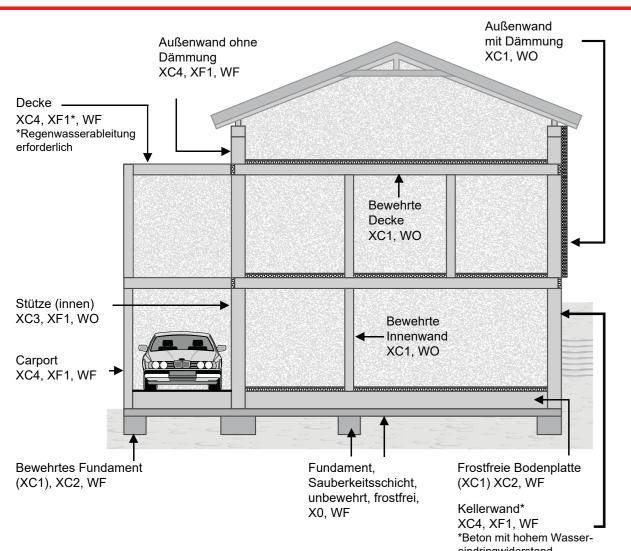
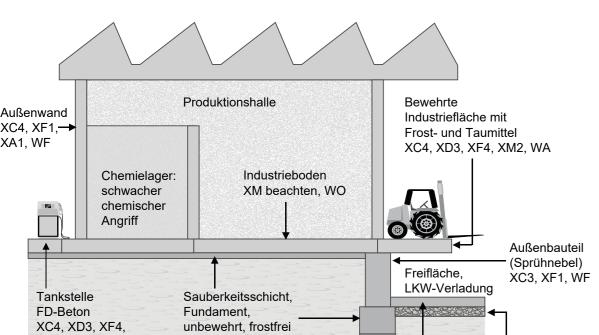


ANWENDUNGSBEISPIEL INDUSTRIEBAU

Unbewehrte Industriefläche mit Frost- und Taumittel Kiestragschicht XF4, XM1, WA

ANWENDUNGSBEISPIEL INGENIEURBAU


Boden: chemisch schwach angreifend


HINWEIS: Die tatsächlichen Expositionsklassen wie auch alle weiteren Anforderungen an den Beton müssen vom Verfasser der Festlegung (z. B. Architekt oder Planungsbüro), objektbezogen vorgegeben werden.

BETQN DIN 1045-2

ANWENDUNGSBEISPIEL	WOHNUNGSBAU

Hydraulisch gebundene

Expositionsklassen

C8/10

C16/20

C16/20

C20/25

C30/37²⁾

C35/45^{2) 4}

C30/37²⁾

C35/45^{2) 4}

C25/30⁵

C35/45⁴⁾

C25/30⁵

C35/45⁴⁾

C30/37⁵⁾

C30/37²⁾

C30/37^{2) 8)}

C35/45^{2) 9)}

³⁾ Bei gleichzeitiger Verwendung von Flugasche und Silikastaub dürfen diese nicht

4) Bei langsam und sehr langsam erhärtenden Betonen (r < 0,30) eine Festigkeits-

⁷⁾ Bei Angriff durch Sulfat (ausgenommen bei Meerwasser) HS-Zement verwenden.

Bei S0,²⁻≤ 1500 mg/l darf eine Mischung aus Zement und Flugasche gemäß DIN

klasse niedriger; Nachweis der Druckfestigkeit im Alter von 28 Tagen.

¹⁰⁾ Höchstzementgehalt 360 kg/m³, jedoch nicht bei hochfestem Beton.

C35/45²⁾

XD Bewehrungskorrosion durch Chloride (außer Meerwasser)

XS Bewehrungskorrosion durch Chloride aus Meerwasser

XF Betonkorrosion durch Frostangriff mit und ohne Taumittel

- (-)

0,75 240 (240)

0.60 280 (270)

0,55 300 (270)

0,50 320 (270)

0,45 320 (270)

0,55 300 (270)

0,50 320 (270)

0,45 320 (270)

0,60 280 (270)

0.503) 320 $(270)^{3}$

0,45 320 (270)⁷⁾

0,55 300¹⁰⁾ (270)

300 (270)³

320 (270)³

300 (270)

320 (270)

280 (270)

320 (270)7)

30010) (270)

32010) (270)

32010) (270)

0,553)

0,503)

0,55

0,50

0,50

0,55

0,45

0,45

Säuregrad

240 (240)

260 (240)

0,75

0,65

X0 Kein Korrosions- oder Angriffsrisiko

XC4 wechselnd nass und trocken C25/30

XD3 wechselnd nass und trocken C35/452)

XS3 Tide-, Spritzwasserbereiche C35/45²⁾

mäßige Wassersättigung,

mäßige Wassersättigung,

hohe Wassersättigung,

hohe Wassersättigung

chemisch schwach

XM1 mäßiger Verschleiß

XM2 starker Verschleiß

angerechnet werden.

1045-2 verwendet werden.

8) Oberflächenbehandlung erforderlich.

9) Hartstoffe nach DIN 1100 erforderlich.

5) LP-Beton.

XM3 sehr starker Verschleiß

XA Betonkorrosion durch chemischen Angriff

XM Betonkorrosion durch Verschleißbeanspruchung

1) Klammerwert: Mindestzementgehalt bei Flugascheanrechnung.

XA2 chemisch mäßig angreifend C35/45^{2) 4)}

XA3 chemisch stark angreifend C35/45^{2) 6)}

²⁾ Bei LP-Beton eine Festigkeitsklasse niedriger.

⁶⁾ Zusätzliche Schutzmaßnahmen erforderlich.

XC Bewehrungskorrosion durch Karbonatisierung

X0 Beton ohne Bewehrung

XC1 trocken oder ständig nass

XC2 nass, selten trocken

XC3 mäßige Feuchte

XD1 mäßige Feuchte

XS1 salzhaltige Luft

XS2 unter Wasser

XD2 nass, selten trocken

³⁾ Beton mit besonderen Eigenschaften bzw. für besondere Anwendungen (z. B. Beton für WU-Bauwerke, UW-Beton, FD/FDE-Beton).

4) Größte Anzahl an Proben ist maßgebend.

Grenzwe	rte für Ex	positionskl	assen XA
Chemisches			

	Merkmal	AAT	7.7.2	ALAG
		Grund	dwasser	
	SO ₄ ²⁻ [mg/l] ¹⁾	≥ 200 und ≤ 600	> 600 und ≤ 3000	> 3000 und ≤ 6000
	pH-Wert [-]	≤ 6,5 und ≥ 5,5	< 5,5 und ≥ 4,5	< 4,5 und ≥ 4,0
	CO ₂ [mg/l] angreifend	≥ 15 und ≤ 40	> 40 und ≤ 100	> 100 bis zur Sättigung
	NH ⁴⁺ [mg/l] ²⁾	≥ 15 und ≤ 30	> 30 und ≤ 60	> 3000 bis zur Sättigung
	Mg ²⁺ [mg/l]	≥ 300 und ≤ 1000	> 1000 und ≤ 3000	> 3000 bis zur Sättigung
		В	oden	
	SO ₄ ²⁻ [mg/kg] ³⁾ insgesamt	≥ 2000 und ≤ 3000 ⁴⁾	> 3000⁴) und ≤ 12000	> 12000 und ≤ 24000

Wenn ≥ 2 Merkmale zur selben Klasse führen, gilt die nächst höhere Klasse. Ausnahme: Kein Wert liegt im oberen Viertel (pH im unteren Viertel) der Klasse.

in der Praxis nicht anzutreffen

Wenn der Sulfatgehalt > 600 mg/l ist, muss dieser bei der Festlegung des Betons

Gülle kann, unabhängig vom NH 4+-Gehalt, in die Expositionsklasse XA1 ein

Tonböden mit einer Durchlässigkeit von weniger als 10-5 m/s dürfen in eine

niedrigere Klasse eingestuft werden.

⁴⁾ Falls die Gefahr der Anhäufung von Sulfationen durch wechselndes Trocknen und Durchfeuchten oder kapillares Saugen besteht, ist der Grenzwert auf 2000 mg/kg

Feuchtigkeitsklassen

KI.	Umgebung	Beispiele
WO	Beton, der nach nor- maler Nachbehand- lung nicht längere Zeit feucht ist und nach dem Austrocknen während der Nutzung weitgehend trocken bleibt	 Innenbauteile des Hochbaus Außenbauteile ohne Einwirkung von z. B. Niederschlägen, Oberflächenwasser, Bodenfeuchte oder ständiger relativer Luftfeuchte > 80%
WF	Beton, der während der Nutzung häufig oder längere Zeit feucht ist	 Ungeschützte Außenbauteile mit Einwirkung von z. B. Niederschlägen, Oberflächenwasser oder Bodenfeuchte Innenbauteile in Feuchträumen mit relativer Luftfeuchte > 80% z. B. Hallenbäder, Wäschereien Bauteile mit häufiger Taupunktunter- schreitung, z. B. Schornsteine, Wärmeüberträgerstationen, Filterkammern oder Viehställe Massige Bauteile mit kleinster Abmessung > 0,80 m
WA	Beton, der zusätzlich zu der Beanspruchung nach Klasse WF häu- figer oder langzeitiger Alkalizufuhr von außen ausgesetzt ist	 Bauteile mit Meerwassereinwirkung Bauteile unter Tausalzeinwirkung ohne hohe dynamische Belastung, z. B. Spritzwasserbereich, Fahr- und Stellflächen in Parkhäusern Bauteile von Industriebauten und landwirtschaftlichen Bauwerken (z. B. Güllebehälter) mit Alkalisalzeinwirkung
ws	Beton, der hoher dyna- mischer Beanspru- chung und direktem Alkalieintrag ausge-	Bauteile unter Tausalzeinwirkung mit hoher dynamischer Belastung (Betonfahrbahnen)

Die Feuchtigkeitsklassen wurden aus der Alkali-Richtlinie in DIN 1045-2 übernommen und müssen bei der Festlegung von Beton und auf dem Lieferschein angegeben werden.

setzt ist

Konsistenzklassen				
Konsistenz Ausbreitmaß [mm]				Verdichtungs- maß [-]
sehr steif			C0	≥ 1,46
steif	F1	≤ 340	C1	1,45 bis 1,26
plastisch	F2	350 bis 410	C2	1,25 bis 1,11
weich	F3	420 bis 480	C3	1,10 bis 1,04
sehr weich	F4 ¹⁾	490 bis 550	C4 ¹⁾	1,10 bis 1,04
fließfähig	F5 ¹⁾	560 bis 620		

Beton nach DIN EN 206-1/DIN 1045-2 mit Konsistenz F4 oder weicher ist mit

Fließmittel herzustellen

²⁾ Bei Ausbreitmaßen über 700 mm ist die DafStb-Richtlinie "Selbstverdichtender Beton" zu beachten.

F6¹) ≥ 630²)

3) Gilt nur für Leichtbeton.

Klasse des Chloridgehalts

Beton- verwendung	Klasse	max. Chloridgehalt im Beton1) [M%]	max. Chloridge- halt de Gesteins- körnung [M%]
unbewehrt	CI 1,0	1,0	0,15
Stahlbeton	CI 0,40	0,40	0,04
Spannbeton	CI 0,20	0,20	0,02

1) Werden Zusatzstoffe des Typs II verwendet und für den Zementgehalt berücksichtigt, wird der Chloridgehalt als der Chloridionengehalt bezogen auf den Zement und die Gesamtmasse der berücksichtigten Zusatzstoffe ausgedrückt.

Mindestdauer der Nachbehandlung von Beton

Oberflächen-	Nachbehandlungsdauer ^{[d]1) 2) 3) 4)}			
temperatur ૭ [°C]	r ≥ 0,50	r ≥ 0,30	r ≥ 0,30	r < 0,15
ϑ≥ 25	1	2	2	3
25 > ϑ ≥ 15	1	2	4	5
15 > ϑ ≥ 10	2	4	7	10
10 > ϑ ≥ 5	3	6	10	15

Alternative Nachbehandlungsdauer für XC2, XC3, XC4 und XF15)

Frischbeton-	Nachbehandlungsdauer [d] ^{2) 4)}			
temperatur ϑ _{fb} [°C]	r ≥ 0,50	r ≥ 0,30	r ≥ 0,30	
$\vartheta_{\text{fb}} \ge 15$	1	2	4	
$15 > \vartheta_{fb} \ge 10$	2	4	7	
$10 > \vartheta_{fb} \ge 5$	4	8	14	

1) Bei X0 und XC1 sind als Nachbehandlungsdauer 0,5 Tage anzusetzen ²⁾ Die Nachbehandlungsdauer wird in Abhängigkeit von der Festigkeitsentwicklung des Betons bestimmt. Die Festigkeitsentwicklung r ist der Quotient aus der 2-Tages-Druckfestigkeit und der Druckfestigkeit zum Zeitpunkt des Nachweises der Druckfestigkeit (ermittelt bei der Erstprüfung oder auf Grundlage der

Ergebnisse einer bekannten Betonzusammensetzung). Bei XM ist die Nachbehandlungsdauer zu verdoppeln.

⁴⁾ Bei mehr als 5 Stunden Verarbeitbarkeitszeit ist die Nachbehandlungsdauer an

gemessen zu verlängern.

⁵⁾ Darf bei Stahlschalungen oder bei Bauteilen mit ungeschalten Oberflächen nur angewendet werden, wenn ein übermäßiges Auskühlen des Betons im Anfangsstadium der Erhärtung ausgeschlossen wird.

Druckfestigkeitsklassen			
Druckfestigkeits- klassen	f _{ck,cyl} (Zylinder) [N/mm²]	f _{ck,cube} (Würfel) [N/mm²]	
C8/10	8	10	
C12/15	12	15	
C12/15	16	20	
C20/25	20	25	
C25/30	25	30	
C30/37	30	37	
C35/45	35	45	
C40/50	40	50	
C45/55	45	55	
C50/60	50	60	

C55/67

C60/75

C70/85

C80/95

C90/1051

C100/115¹⁾

1) Allgemeine bauaufsichtliche Zulassung oder Zustimmung im Einzelfall erforder-

Betonieren bei niedrigen AuRantamnaraturan

Aui	Bentemperaturen
Lufttemperatur [°C]	Mindesttemperatur des Frischbetons beim Einbau [°C]
+5 bis -3	+5 allgemein +10 bei Zementgehalt < 240 kg / m³ oder bei LH-Zementen
< -3	+10 sollte mindestens 3 Tage gehalten werden ¹⁾

¹⁾ Wird diese Anforderung nicht erfüllt, ist der Beton so lange zu schützen, bis eine ausreichende Festigkeit erreicht ist.

Gefrierbeständigkeit

Zementfestig- keitsklasse	w/z-Wert	Erforderliche Erhärtungszeit in Tagen bei einer Betontemperatur von		
NortSkiusso		5 °C	12 °C	20 °C
52,5 N, 52,5 R,	0,40	0,5	0,25	0,25
42,5 R	0,60	0,75	0,5	0,5
42,5 N, 32,5 R	0,40	1	0,75	0,5
42,5 N, 32,5 K	0,60	2	1,5	1
	0,40	2	1,5	1
32,5 N	0,60	5	3,5	2

Gegen Niederschlag geschützter junger Beton darf erst dann durchfrieren, wenn er eine Druckfestigkeit von f_{cm} = 5 N/mm² erreicht hat oder seine Temperatur wenigstens 3 Tage +10 °C nicht unterschritten hat.

SCHUTZMASSNAHMEN GEGEN VORZEITIGES AUSTROCKNEN

• in der Schalung belassen

• mit Folien abdecken

 mit Thermomatten abdecken wasserhaltende Abdeckungen aufbringen

(Jute, Geotextilmatten)

• flüssige Nachbehandlungsmittel aufbringen

• kontinuierliches Besprühen mit Wasser

Unterwasserlagerung

· Kombination der aufgeführten Maßnahmen.